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Abstract

Infographics communicate information using a combi-
nation of textual, graphical and visual elements. This work
explores the automatic understanding of infographic images
by using a Visual Question Answering technique. To this
end, we present InfographicVQA, a new dataset comprising
a diverse collection of infographics and question-answer
annotations. The questions require methods that jointly rea-
son over the document layout, textual content, graphical el-
ements, and data visualizations. We curate the dataset with
an emphasis on questions that require elementary reason-
ing and basic arithmetic skills. For VQA on the dataset,
we evaluate two Transformer-based strong baselines. Both
the baselines yield unsatisfactory results compared to near
perfect human performance on the dataset. The results sug-
gest that VQA on infographics—images that are designed
to communicate information quickly and clearly to human
brain—is ideal for benchmarking machine understanding
of complex document images. The dataset is available for
download at docvqa.org

1. Introduction
Infographics are documents created to convey informa-

tion in a compact manner using a combination of textual
and visual cues. The presence of the text, numbers and sym-
bols, along with the semantics that arise from their relative
placements, make infographics understanding a challeng-
ing problem. True document image understanding in this
domain requires methods to jointly reason over the docu-
ment layout, textual content, graphical elements, data visu-
alisations, color schemes and visual art, among others. Mo-
tivated by the multimodal nature of infographics, and the
human centered design, we propose a Visual Question An-
swering (VQA) approach to infographics understanding.

VQA received significant attention over the past few
years [15, 5, 16, 20, 23, 3]. Several new VQA branches
focus on images with text, such as answering questions

*Work done during an internship at IIIT Hyderabad.

How many companies have more than 10K delivery workers?
Answer: 2 Evidence: Figure
Answer-source: Non-extractive Operation: Counting Sorting

Who has better coverage in Toronto - Canada post or Amazon?
Answer: canada post Evidence: Text
Answer-source: Question-span Image-span Operation: none

In which cities did Canada Post get maximum media coverage?
Answer: vancouver, montreal Evidence: Text Map
Answer-source: Multi-span Operation: none

Figure 1: Example image from InfographicVQA along with ques-
tions and answers. For each question, source of the answer, type
of evidence the answer is grounded on, and the discrete operations
required to find the answer are shown.

by looking at text books [24], business documents [31],
charts [21, 22, 10] and screenshots of web pages [41]. Still,
infographics are unique in their combined use and purpose-
ful arrangement of visual and textual elements.

In this work, we introduce a new dataset for VQA on
infographics, InfographicVQA, comprising 30, 035 ques-
tions over 5, 485 images. An example from our dataset is
shown in Figure 1. Questions in the dataset include ques-
tions grounded on tables, figures and visualizations and
questions that require combining multiple cues. Since most
infographics contain numerical data, we collect questions
that require elementary reasoning skills such as counting,
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Dataset Images Synthetic Template Text type # Images # Questions Answer typeImages questions

TQA [24] Science diagrams ✗ ✗ MR 1K 26K MCQ
RecipeQA [48] Culinary pictures ✗ ✓ MR 251K 37K MCQ
ST-VQA [7] Natural images ✗ ✗ ST 23K 31K Ex
TextVQA [39] Natural images ✗ ✗ ST 28K 45K Ex, SAb
OCR-VQA [32] Book covers ✗ ✓ BD 207K 1M Ex, Y/N
DVQA [21] Bar charts ✓ ✓ BD 300K 3.4M Ex, Nm, Y/N
FigureQA [22] Charts - 5 types ✓ ✓ BD 120K 1.5M Y/N
LEAF-QA [10] Charts - 4 types ✓ ✓ BD 250K 2M Ex, Nm, Y/N
VisualMRC [41] Webpage screenshots ✗ ✗ BD 10K 30K Ab
DocVQA [31] Industry documents ✗ ✗ Pr, Tw, Hw, BD 12K 50K Ex
InfographicVQA Infographics ✗ ✗ BD 5.4K 30K Ex, Nm

Table 1: Summary of VQA and Multimodal QA datasets where text on the images needs to be read to answer questions. Text type
abbreviations are: Machine Readable: MR, Scene Text: ST,Born Digital: BD, Printed: Pr, Handwritten: Hw, and Typewritten: Tw. Answer
type abbreviations are: Multiple Choice Question: MCQ, Extractive: Ex, Short abstractive: SAb, Abstractive: Ab, Yes/No: Y/N, and
Numerical (answer is numerical and not extracted from image or question; but derived): Nm.

sorting and arithmetic operations. We believe our dataset is
ideal for benchmarking progress of algorithms at the meet-
ing point of vision, language and document understanding.

We adapt a multimodal Transformer [42]-based VQA
model called M4C [19] and a layout-aware, BERT [12]-
style extractive QA model called LayoutLM [46] for VQA
on InfographicVQA. Results using these two strong base-
lines show that current state-of-the-art (SoTA) models for
similar tasks perform poorly on the new dataset. The results
also highlight the need to devise better feature extractors for
infographics, different from bottom-up features [4] of visual
‘objects’ that are typically used for VQA on natural scene
images.

2. Related works

Question answering in a multimodal context. Textbook
Question Answering (TQA) [24] and RecipeQA [48] deal
with Question Answering (QA) in a multimodal context.
For TQA, contexts are textbook lessons and for RecipeQA,
contexts are recipes containing text and images. Contrary to
InfographicVQA and other datasets mentioned below, text
in these two datasets are not embedded on the images, but
provided in machine-readable form, as a separate input.

ST-VQA [7] and TextVQA [39] datasets extend VQA
over natural images to a new direction where understand-
ing scene text on the images is necessary to answer the
questions. While these datasets comprise images captured
in the wild with sparse text content, InfographicVQA has
born-digital images with an order of magnitude more text
tokens per image, richer in layout and in the interplay be-
tween textual and visual elements. OCR-VQA [32] intro-
duces a task similar to ST-VQA and TextVQA, but solely
on images of book covers. Template questions are gen-
erated from book metadata such as author name and title.
Consequently, question-answers in the dataset are less re-

liant on visual information. DVQA [21], FigureQA [22],
and LEAF-QA [10] datasets deal with VQA on charts. All
three datasets have chart images rendered using chart plot-
ting libraries and template questions.

DocVQA [31] comprises images of pages from in-
dustry/business documents. Questions in the dataset are
grounded on document elements such as passages, tables,
forms and charts. Similar to ST-VQA, DocVQA is an ex-
tractive VQA task where answers can always be extracted
verbatim from the text on the images. VisualMRC [41]
on the other hand, is an abstractive VQA (answers cannot
be directly extracted from text in the images or questions)
benchmark where images are screenshots of web pages.
Compared to VisualMRC, InfographicVQA is an extractive
VQA task (answers are extracted as ‘span’(s) of the ques-
tion or text present in the given image), except for questions
that require certain discrete operations resulting in numeri-
cal non-extractive answers. (see subsection 3.2). Table 1
presents a high-level summary of the QA/VQA datasets re-
lated to ours.

Multimodal transformer for Vision-Language tasks.
Following the success of BERT [12]-like models for Natural
Language Processing (NLP) tasks, there have been multiple
works extending it to the Vision-Language space. Models
like VL-BERT [40], VisualBERT [27], and UNITER [11]
show that combined pretraining of BERT-like architectures
on vision and language inputs achieve SoTA performances
on various downstream tasks, including VQA on natural
images. For VQA on images with scene text, M4C and
TAP [49] use a multimodal transformer block to fuse em-
beddings of question, scene text tokens, and objects de-
tected from an image.

The success of transformer-based models for text under-
standing inspired the use of similar models for document
image understanding. LayoutLM and LAMBERT [14]
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Figure 2: Count of questions in validation set by their Answer-source, (2a), Evidence required to answer (2b) and the discrete Operation
performed to find the answer (2c).

incorporate layout information to the BERT architecture
by using embeddings of the 2D positions of the text to-
kens in the image. One of the strong baselines we use
in this work is based on the LayoutLM model. Concur-
rent to this work, there have been multiple works pub-
lished on arXiv that deal with a joint understanding of
the text, image and layout in document images. Models
such as LayoutLMv2 [47], TILT [34], DocFormer [6] and
StrucText [28] build on transformer-based architectures and
leverage large-scale pretraining on unlabelled data, using
pretraining objectives specifically designed for document
understanding.

Infographics understanding. Bylinskii et al. [9] and
Madan et al. [30] looked at generating textual and visual
tags from infographics. Landman uses an existing text sum-
marization model to generate captions for infographics [26].
But the model uses only text recognized from infograph-
ics to generate the captions and layout/visual information is
not considered. These three works use Visually29K dataset
that comprises images from a single infographics website.
MASSVIS [8] is a collection of infographics created to
study infographics from a cognitive perspective. As ob-
served by Lu et al. [29], it is a specialized collection focus-
ing on illustrations of scientific procedures and statistical
charts, therefore not representative of general infographics.

To summarize, existing datasets containing infograph-
ics are either specialized collections or infographics col-
lected from a single source. In contrast, the Infograph-
icVQA dataset comprises infographics drawn from thou-
sands of different sources, with diverse layouts and designs,
and without any topic specialization.

3. InfographicVQA

A brief description of the data collection and detailed
analysis of the data is presented here. Refer to Section A in
the supplementary material for more details on data collec-
tion.

3.1. Collecting images and question-answer pairs

Infographics in the dataset were downloaded from the In-
ternet for the search query “infographics” . The downloaded
images are cleaned for removal of duplicates before adding
them to the annotation tool. Unlike crowd-sourced annota-
tion, InfographicVQA was annotated by a small number of
annotators using an internal annotation tool. The annotation
process involved two stages. In the first stage, workers were
required to add question-answer pairs based on an info-
graphic shown to them. Similar to the SQuAD dataset [35],
to make the evaluation more robust, an additional answer
was collected for each question in the validation and test
split during the second stage of annotation. At this stage,
workers were shown an image annotated in the first stage
along with the questions asked on it. They were instructed
to answer the questions or flag a question if it was unan-
swerable.

3.2. Question-answer types: answer-source, evi-
dence and operation

In the second stage, in addition to answering questions
collected in the first stage, we instructed the workers to
add question-answer types (QA types). QA types are a set
of category labels assigned to each question-answer pair.
DocVQA and VisualMRC have QA types that indicate the
kind of document object a question is based on. DROP [13]
dataset for reading comprehension defines answer types
such as question span and passage span and categorizes
questions by the kind of discrete operations arithmetic or
logical operations required to find the answer. In Info-
graphicVQA we collect QA types under three categories —
Answer-source, Evidence and Operation.

There are four types of Answer-source — Image-span,
Question-span, Multi-span and Non-extractive. Akin to the
definition of ‘span’ in SQuAD [35] and DocVQA, an an-
swer is considered Image-span if it corresponds to a single
span (a sequence of text tokens) of text, extracted verbatim,
in the reading order, from text present in the image. Simi-
larly, when the answer is a span from the question it is la-
belled as Question-span. In Figure 1, answer to the second
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question is found both in the image and question as single
sequence of contiguous tokens (or a ‘span’). Hence there
are two answer sources for the question — Image-span and
Question-span. A Multi-span answer is composed of mul-
tiple spans of text from the image. Like the DROP dataset
annotation, we instructed our workers to enter Multi-span
answers by separating each individual span by a comma and
a white space. For example, in Figure 1 for the last question
the answer is names of two cities, which do not appear in
a contiguous sequence of text. Hence it is a Multi-span an-
swer. For a Multi-span answer, any order of the individual
spans is a valid answer. In the above example, both “Van-
couver, Montreal” and “Montreal, Vancouver” are valid an-
swers. Since such answers are unordered lists, we consider
all permutations of the list as valid answers for the question
at evaluation time. The ’Non-extractive’ type is assigned
when the answer is not an extracted one. While collect-
ing question-answer pairs, Non-extractive questions were
allowed only if the answer is a numerical value. Inclusion
of Question-span, Multi-span and numerical Non-extractive
answers in InfographicVQA is inspired by a similar setting
in the DROP dataset. We see this as a natural next step in
VQA involving text, different from the purely extractive QA
setting in datasets like DocVQA and ST-VQA, and abstrac-
tive question answering in VisualMRC where automated
evaluation is difficult. Allowing only numerical answers in
the non-extractive case makes sure that such answers are
short and unique, giving no room for variability. Near per-
fect human performance while using automatic evaluation
metrics (Table 4) validates that answers in InfographicVQA
are unique with minimal variability when answered by dif-
ferent individuals.

The Evidence type indicates the kind of evidence behind
the answer. Types of evidence are Text, Figure, Table/List,
Map and Visual/Layout. For example, Map is used if the
question is based on data shown on a geographical map.
Visual/Layout type is added when evidence is based on the
visual or layout aspect of the image. For example, questions
such as “What is the color of the hat - brown or black?” or
“What is written at the top left corner” fall in this category.
Sometimes it is difficult to discern evidence for a question-
answer pair. For example, for the first question in Figure 1,
although the evidence type assigned by the worker is ‘Fig-
ure’, it could even be ‘Table/List’ since the visualization
looks like a table. The operation type captures the kind
of discrete operation(s) required to arrive at an answer —
Counting, Arithmetic or Sorting.

Figure 2 shows the distribution of questions in the vali-
dation split based on Answer-source, Evidence and Opera-
tion. As evident from Figure 1, a question can have multiple
types of answer source, evidence, or operation and many
questions do not require any of the specified discrete oper-
ations to find the answer. For these reasons, counts in plots

shown in Figure 2 do not add up to 100%.

3.3. Summary, statistics, and analysis

Dataset Questions Answers Avg. tokens
%Unique Avg. len %Unique Avg. len per image

ST-VQA 84.84 8.80 65.63 1.56 7.52
TextVQA 80.36 8.12 51.74 1.51 12.17
VisualMRC 96.26 10.55 91.82 9.55 151.46
DocVQA 72.34 9.49 64.29 2.43 182.75
InfographicVQA 99.11 11.54 48.84 1.60 217.89

Table 2: Statistics of questions, answers and OCR tokens in Info-
graphicVQA and other similar VQA datasets.

InfographicVQA dataset has 30, 035 questions and
5, 485 images in total. These images are from 2, 594 dis-
tinct web domains. The data is split randomly to 23, 946
questions and 4, 406 images in train, 2, 801 questions and
500 images in validation, and 3, 288 questions and 579 im-
ages in test splits. We show basic statistics of questions, an-
swers and OCR tokens in InfographicVQA and other simi-
lar datasets in Table 2.
Questions. Table 2 shows that InfographicVQA has the
highest percentage of unique questions and the highest av-
erage question length compared to similar datasets. Fig-
ure 3 shows a sunburst of the common questions in the
dataset. There are a good number of questions asking for
“How many...” or percentages. This is expected since info-
graphics carry a lot of numerical data.
Answers. It can be seen in Figure 4 that the most common
answers are numbers. This is the reason why Infograph-
icVQA has a smaller number of unique answers and smaller
average answer lengths.

Figure 3: Staring 4-grams of common questions in Infograph-
icVQA.
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Figure 4: Word cloud of answers (left) and word cloud of words
recognized from the infographics (right).

Embedded text. The number of average text tokens in In-
fographicVQA images is 217.89. Word cloud of Optical
Character Recognition (OCR) tokens spotted on the images
is shown in the wordcloud on the right in Figure 4. Common
answers and common text tokens in images are similar.

4. Baselines

In this section, we describe the baselines we evaluated on
the InfographicVQA. These include heuristic baselines and
upper bounds, and SoTA models for VQA and document
image understanding.

4.1. Heuristic baselines and upper bounds

Heuristic baselines and upper bounds we evaluate are
similar to the ones evaluated in other VQA benchmarks like
TextVQA and DocVQA.
Heuristic Baselines. We evaluate performance when an
answer predicted for each questions is i) Random answer
from the train split, ii) Majority answer from the train split
and iii) Random OCR token from the image on which
question is asked.
Upper bounds. We evaluate the performance upper bound
on predicting the correct answer if the answer is present in a
vocabulary of the most common answers in train split. This
upper bound is called Vocab UB. Following DocVQA, to
assess the percentage of questions for which answers can
be found from the given OCR transcriptions, we compute
OCR UB that measures the upper bound on performance
if we always predict the correct answer, provided the an-
swer is a sub sequence of the serialized OCR transcription
of the given infographic. We serialize OCR tokens in the
natural reading order, i.e., from top-left to bottom-right. Vo-
cab+OCR UB is the percentage of questions that are either
in Vocab UB or OCR UB.

4.2. M4C

M4C uses a Transformer stack to fuse representations
of a question, OCR tokens, and image. Answers are pre-
dicted using an iterative, auto-regressive decoder decoding
one word at a time, either from a fixed vocabulary or from
the OCR tokens spotted on the image. Original M4C uses
Region of Interest (ROI) pooled features from Box head of

a Faster-RCNN [36] as the bottom-up visual features. Vi-
sual features of both the objects detected on the image and
the OCR tokens spotted on the image are used.

4.3. LayoutLM

LayoutLM [46] extends BERT by incorporating layout
information into the original BERT model. LayoutLM pre-
trained on millions of document images has proven to be
effective for multiple document image understanding tasks.
To adapt LayoutLM for InfographicVQA, we change the
input to suit a multimodal setting and use an output head
‘span’ prediction. Since we are using SQuAD-style span
prediction at the output, this model can only handle ques-
tions whose Answer-source is Image-span. Nearly 70% of
questions in validation and test split are of this type. Ex-
tending this model to include questions with other Answer-
sources is an interesting direction for future work.

4.3.1 Model overview

A schematic of the LayoutLM-based model which we use
for InfographicVQA is shown in Figure 5. The input se-
quence to the model starts with a special [CLS] token, fol-
lowed by the question tokens and the OCR tokens. The se-
quence ends with a special [SEP] token. Question and OCR
tokens are also separated by a [SEP] token. All the tokens in
the input sequence are represented by a corresponding em-
bedding which in turn is the sum of i) a token embedding,
ii) a segment embedding, iii) a 1D position embedding, iv)
Four 2D position embeddings, and v) a visual embedding.

Following the original setting in BERT, for token em-
bedding, we use WordPiece embeddings [45] with a
30, 000 size vocabulary. These embeddings are of size 768 .
A segment embedding differentiates different segments in
the input. For example, when the input sequence is formed
by tokens from question and OCR tokens, question tokens
and OCR tokens are given a segment id of 0 and 1, respec-
tively. 1D position embedding is used to indicate the order
of a token within the sequence. For OCR tokens we use the
default reading order by serializing the tokens in top-left to
bottom-right order.

For 2D position embedding, we follow the same process
as original LayoutLM. Given the bounding box coordinates
(x1, y1, x2, y2) of an OCR token, we embed all the 4 co-
ordinate values using 4 separate embedding layers. x1 and
x2 share same embedding table and y1 and y2 share an-
other common embedding table. The coordinate values are
normalized to lie in the range 0–1000 before embedding.
For [CLS] token we use 2D embedding corresponding to
(0, 0, 1000, 1000). For question tokens all the four 2D po-
sition embeddings used are 0s.

Unlike in original LayoutLM where visual features are
fused after getting the attended embeddings from the Trans-
former block, we fuse the visual features early with the text
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Figure 5: Overview of our LayoutLM based model for predicting answer spans. Textual, visual and layout modalities are embedded and
mapped to the same space. Then, they are added and passed as input to a stack of Transformer layers.

input. Similar to M4C, for each OCR token, we use ROI
pooled feature from the Box head of a pretrained object de-
tection style model. This feature is mapped to the same size
as other embeddings using a linear projection layer. For
[CLS] and other special tokens we add visual feature cor-
responding to an ROI covering the entire image, named as
“Full Img” in Figure 5.

4.3.2 Training procedure

Similar to the BERT and original LayoutLM, we train the
model in two stages.
Pretraining: Following original LayoutLM, we use
Masked Visual-Language Model (MVLM) task for pre-
training with a masking probability of 0.15. Whenever
masking, we replace each token with the [MASK] token
80% of the time, with a random token 10% of the time and
keep it unchanged 10% of the time.
Finetuning: For finetuning, similar to BERT QA model for
SQuAD benchmark, we use an output head that predicts
start and end token positions of the answer span.

5. Experiments and results

In this section we report the experimental setting and re-
sults.

Detector TextVQA DocVQA InfographicVQA
Avg. <2 det.(%) Avg. <2 det.(%) Avg. <2 det.(%)

VG 28.8 0.0 4.1 43.9 7.4 23.9
DLA 1.0 97.9 4.7 0.0 2.9 43.4

Table 3: Statistics of object detections using two detectors – VG
and DLA. DLA is trained for detecting document layout objects
and VG is an object detection model trained on Visual Genome.
Avg. shows average number of detections per image. ‘ <2
det.(%)’ is the percentage of images on which number of detected
objects is less than 2.

ANLS Accuracy(%)
Baseline val test. val test

Human performance - 0.980 - 95.70
Random answer 0.006 0.005 0.00 0.00
Random OCR token 0.011 0.014 0.29 0.49
Majority answer 0.041 0.035 2.21 1.73
Vocab UB - - 53.16 51.34
OCR UB - - 53.95 56.96
Vocab + OCR UB - - 76.71 77.4

Table 4: Results of heuristics and upper bounds. Heuristics yield
near zero results. More than 75% of the questions have their an-
swer present either in a fixed vocabulary or as an Image-span of
the OCR tokens serialized in default reading order.

5.1. Experimental setup

Evaluation metrics. For evaluating VQA performance on
InfographicVQA, we use Average Normalized Levenshtein
Similarity (ANLS) and Accuracy metrics. The evaluation
setup is same as the evaluation in DocVQA.
OCR transcription. Text transcriptions and bounding
boxes for text tokens in the images are obtained using Tex-
tract OCR [1].
Human performance For evaluating human performance,
all questions in the test split of the dataset are answered
with the help of two volunteers (each question answered by
a single volunteer).
Vocabulary of most common answers. For Vocab UB and
heuristics involving a vocabulary, we use a vocabulary of
5,000 most common answers in the train split.
ROI Features. For our experiments using M4C and Lay-
outLM models, visual features of different bounding re-
gions from the images are used. To this end, we use two
pretrained object detection models — a Faster-RCNN [36]
trained on Visual Genome [25] and a Mask-RCNN [17]
trained on document images in PubLayNet [50] for Doc-
ument Layout Analysis (DLA). We refer to these detectors
as VG and DLA, respectively, in further discussions. The
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FasterRCNN model we use is same as the one used for
M4C. We use the implementation in MMF framework [37].
The DLA detector we use is from a publicly available De-
tectron2 [44]-based implementation [18]. Features from the
last or second last Fully Connected (FC) layer are used as
visual features in M4C and LayoutLM model. In VG and
DLA, these features are of size 2048 and 1024 respectively.

In Table 3 we summarize the results while using the two
detectors on TextVQA, DocVQA and InfographicVQA.
With DLA, we notice that many of its detections, especially
when there is only one detection per image is a box covering
the entire image.
Experimental setting for M4C. We use the official imple-
mentation of the model [37]. The training parameters and
other implementation details are the same as the ones used
in the original paper. As done in original M4C, fixed vocab-
ulary used with the model is created from 5, 000 most com-
mon words among words from answers in the train split.
Experimental setting for LayoutLM. The model is im-
plemented in Pytorch [33]. In all our experiments, we
start from a pretrained checkpoint of LayoutLM model
made available by the authors in Hugginface’s Transformers
model zoo [43, 2]. The newly introduced linear projection
layer which maps the ROI pooled features to the common
embedding size of 768, is initialized from scratch. The fea-
tures are from the last FC layer of the Box head of DLA or
VG. To continue pretraining using in-domain data, we use
four samples in one batch and Adam optimizer with a learn-
ing rate 2e− 5. For finetuning, we use a batch size of 8 and
Adam optimizer with learning rate 1e − 5. For in-domain
pretraining and finetuning no additional data other than train
split of InfographicVQA is used. To map answers in Info-
graphicVQA train split to SQUAD [35]-style spans, we fol-
low the same approach used by Mathew et al. for DocVQA.
We take the first subsequence match of an answer in the
serialized transcription as the corresponding answer span.
This way we find approximate spans for 52% of questions
in the train split. Rest of the questions are not used for fine-
tuning the model.

5.2. Results

Results of heuristic baselines, upper bounds, and human
performance are shown in Table 4. Human performance
is comparable to the human performance on DocVQA. As
given by the Vocab + OCR UB, more than three quarters of
questions have their answers present as a span of the OCR
tokens serialized in the default reading order or in a vocab-
ulary of most common answers in the train split.

We show results using M4C model in Table 5. In contrast
to the original setting for which finetuning of visual features
and features of detected objects are used, a setting that uses
no finetuning and only a single visual feature corresponding
to ROI covering the entire image, yields the best result.

Visual Finetune Object& # OCR ANLS Accuracy(%)
Feature detector Count tokens val test val test

VG ✓ Obj. (100) 50 0.107 0.119 4.81 4.87
VG ✓ Obj. (20) 50 0.111 0.122 4.82 4.87
VG ✗ Obj. (20) 50 0.125 0.127 4.89 4.89
VG ✗ Obj. (20) 300 0.128 0.134 4.90 5.08
VG ✗ None 300 0.136 0.143 5.86 6.58
VG ✗ Full Img 300 0.142 0.147 5.93 6.64
DLA ✗ Obj. (20) 50 0.110 0.130 4.86 5.02
DLA ✗ Obj. (20) 300 0.132 0.144 5.95 6.50
DLA ✗ None 300 0.140 0.142 5.90 6.39
DLA ✗ Full Img 300 0.138 0.140 5.97 6.42

Table 5: Performance of different variants of the M4C model. The
original M4C setting is the one shown in the first row. ‘Fine-
tune detector’ denotes the case when features from penultimate
FC layer is used and last FC layer is finetuned along with the
M4C model. This is the default setting in M4C. In our experi-
ments, we get better results without finetuning. ‘Obj. (100)’ is the
case when features from up to 100 objects (bottom-up features) are
used. We experiment with 20 objects per image and the results did
not change much. Using no object (‘None’) and feature from only
one object—a box covering the entire image (‘Full Img’)—yield
better results than the case where bottom-up objects are used.

Results of the LayoutLM based model are shown in Ta-
ble 6. In-domain pretraining, using text from question, and
OCR tokens help the model significantly. This is inline with
observation by Singh et al. that pretraining on data simi-
lar to the data for a downstream task is highly beneficial in
visio-linguistic pretraining [38]. The model that uses Full
Img feature from DLA, added to the CLS performs the best
on validation set. On the test set, a model which does not
use any visual feature performs the best.

From Table 6, it is evident that models which use visual
features of OCR tokens do not give better results. This im-

Full Img Visual Continue OCR ANLS Accuracy (%)
to feature pretrain. visual val test val test

- - ✗ ✗ 0.212 0.225 13.40 15.32
- - ✓ ✗ 0.250 0.272 18.14 19.74
CLS DLA ✓ ✗ 0.256 0.261 18.56 19.16
All DLA ✓ ✗ 0.248 0.266 17.82 18.77
Non-OCR DLA ✓ ✓ 0.245 0.263 17.21 18.37
CLS VG ✓ ✗ 0.229 0.235 16.47 16.51
All VG ✓ ✗ 0.109 0.106 5.43 4.96
Non-OCR VG ✓ ✓ 0.042 0.037 1.75 1.28

Table 6: Performance of LayoutLM with different input settings.
Row 1 and 2 show LayoutLM’s performance with and without in-
domain pretraining. ‘Visual Feature’ column specify the kind of
detector used for visual feature. ‘OCR visual’ indicate whether
visual features of the OCR tokens are used or not. ‘CLS’, ‘All’
and ‘Non-OCR’ in ‘Full Img to’ column represent Full Img fea-
ture added only to CLS token, all tokens and all non OCR tokens
respectively.
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Figure 6: Performance of baselines and upper bounds for different QA types.

What is the interest rates of European Cen-
tral Bank and US FED?
LayoutLM: 0.25% M4C: 0.1%
Human: 0.25% GT: 0.25%

Which is the least populated continent in the
world?
LayoutLM: EU M4C: Oceania
Human: Oceania GT: Oceania

What percentage of workers are not working
from home?
LayoutLM: 77% M4C: 66%
Human: 23% GT: 23%

Figure 7: Qualitative Results For the left most question, evidence is Table/List and the LayoutLM gets it right. In case of the second
question where evidence is a Table/List and Sorting is involved, M4C answers correctly. In case of the last question that requires subtraction
of 77 from 100 neither M4C, nor LayoutLM gets the answer correct. For better visualization, images we show here are relevant regions
cropped from the original infographics. More qualitative examples showing images in original size are given in the supplementary material.

plies that token embeddings of the OCR tokens are good
enough and the additional information from visual features
of the tokens contribute little to the performance.

Most of the recent models that employ visio-linguistic
pretraining of BERT-like architectures [27, 40] incorporate
bottom-up visual features—features of objects detected on
the images—into the model as visual tokens. We follow the
approach in VisualBERT [27], where visual tokens are con-
catenated after the input stream of text tokens. Each visual
token is represented by a dummy text token [OBJ], a sep-
arate segment, 1D and 2D positions and the ROI pooled
visual feature of the object’s region. But in our experi-
ments, the addition of visual tokens did not give us results
any better than the model without visual tokens. Hence we
do not show this setting in illustration of our model archi-
tecture or in the results table. We believe the visual tokens
we use impart little information since the object detectors
we use— a detector trained for detecting objects on natural
scene images and another for document layout analysis—
are not suitable for infographics. This is evident from Ta-
ble 3. Both the detectors detect only a few instances of ob-

jects on infographics.
In Figure 6, the performance of our trained baselines on

the test split is compared against the upper bounds and hu-
man performance. The M4C and LayoutLM models used
for this comparison are the variants that give best ANLS
on the test data. Finally a few qualitative results from our
experiments are shown in Figure 7.

6. Conclusion

We introduce the InfographicVQA dataset and the task
of VQA on infographics. Results using the baseline models
suggest that existing models designed for multimodal QA
or VQA perform poorly on the new dataset. We believe
our work will inspire research towards understanding im-
ages with a complex interplay of layout, graphical elements
and embedded text.
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